Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Physiol Renal Physiol ; 326(4): F611-F621, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385173

RESUMEN

Soluble prorenin receptor (sPRR), a component of the renin-angiotensin system (RAS), has been identified as a plasma biomarker for hypertension and cardiovascular diseases in humans. Despite studies showing that sPRR in the kidney is produced by tubular cells in the renal collecting duct (CD), its biological actions modulating cardiorenal function in physiological conditions remain unknown. Therefore, the objective of our study was to investigate whether CD-derived human sPRR (HsPRR) expression influences cardiorenal function and examine sex and circadian differences. Thus, we investigated the status of the intrarenal RAS, water and electrolyte balance, renal filtration capacity, and blood pressure (BP) regulation in CD-HsPRR and control (CTL) mice. CD-HsPRR mice were generated by breeding human sPRR-Myc-tag mice with Hoxb7/Cre mice. Renal sPRR expression increased in CD-HsPRR mice, but circulating sPRR and RAS levels were unchanged compared with CTL mice. Only female littermates expressing CD-HsPRR showed 1) increased 24-h BP, 2) an impaired BP response to an acute dose of losartan and attenuated angiotensin II (ANG II)-induced hypertension, 3) reduced angiotensin-converting enzyme activity and ANG II content in the renal cortex, and 4) decreased glomerular filtration rate, with no changes in natriuresis and kaliuresis despite upregulation of the ß-subunit of the epithelial Na+ channel in the renal cortex. These cardiorenal alterations were displayed only during the active phase of the day. Taken together, these data suggest that HsPRR could interact with ANG II type 1 receptors mediating sex-specific, ANG II-independent renal dysfunction and a prohypertensive phenotype in a sex-specific manner.NEW & NOTEWORTHY We successfully generated a humanized mouse model that expresses human sPRR in the collecting duct. Collecting duct-derived human sPRR did not change circulating sPRR and RAS levels but increased daytime BP in female mice while showing an attenuated angiotensin II-dependent pressor response. These findings may aid in elucidating the mechanisms by which women show uncontrolled BP in response to antihypertensive treatments targeting the RAS, improving approaches to reduce uncontrolled BP and chronic kidney disease incidences in women.


Asunto(s)
Hipertensión , ATPasas de Translocación de Protón Vacuolares , Masculino , Humanos , Femenino , Ratones , Animales , Angiotensina II/farmacología , Receptor de Prorenina , Riñón/metabolismo , Sistema Renina-Angiotensina , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Renina/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
2.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38260688

RESUMEN

Increased circulating levels of the soluble prorenin receptor (sPRR), a component of the renin angiotensin system (RAS), plays a role in obesity, glucose, and insulin homeostasis. However, elevated plasma sPRR in diabetic patients has been shown correlated with hyperglycemia in women but not men. Hence, the current study sought to understand the contribution of human sPRR (HsPRR) produced in the adipose tissue (Adi) on adipogenesis, and glucose and insulin balance in obesity settings. Adi-HsPRR mice were generated by breeding human sPRR-Myc-tag transgenic mice with mice expressing Adiponectin/Cre. The mouse model was validated by detecting 28kDa myc-tagged HsPRR by western blotting. Adipose HsPRR expression did not change circulating sPRR in female mice fed a standard chow diet or high fat diet (HFD) but increased plasma sPRR in male Adi-HsPRR mice fed a HFD compared to HFD-fed controls. Yet, Adi-HsPRR improved insulin sensitivity, vascular relaxation and the vasodilator agent Ang 1-7 in obese female mice but not in the male counterparts. Moreover, Adi-HsPRR expression reduced the expression of the adipogenic genes SREBP1C and CD36 only in gonadal white adipose from obese female mice, signifying that adipose tissue-derived HsPRR exerts a sex-specific effect on insulin sensitivity and endothelial function which seems independent of circulating sPRR.

3.
Am J Physiol Endocrinol Metab ; 320(3): E609-E618, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33459178

RESUMEN

Obesity is associated with alterations in hepatic lipid metabolism. We previously identified the prorenin receptor (PRR) as a potential contributor to liver steatosis. Therefore, we aimed to determine the relative contribution of PRR and its soluble form, sPRR, to lipid homeostasis. PRR-floxed male mice were treated with an adeno-associated virus with thyroxine-binding globulin promoter-driven Cre to delete PRR in the liver [liver PRR knockout (KO) mice]. Hepatic PRR deletion did not change the body weight but increased liver weights. The deletion of PRR in the liver decreased peroxisome proliferator-activated receptor gamma (PPARγ) and triglyceride levels, but liver PRR KO mice exhibited higher plasma cholesterol levels and lower hepatic low-density lipoprotein receptor (LDLR) and Sortilin 1 (SORT1) proteins than control (CTL) mice. Surprisingly, hepatic PRR deletion elevated hepatic cholesterol, and up-regulated hepatic sterol regulatory element-binding protein 2 (SREBP2) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA-R) genes. In addition, the plasma levels of sPRR were significantly higher in liver PRR KO mice than in controls. In vitro studies in HepG2 cells demonstrated that sPRR treatment upregulated SREBP2, suggesting that sPRR could contribute to hepatic cholesterol biosynthesis. Interestingly, PRR, total cleaved and noncleaved sPRR contents, furin, and Site-1 protease (S1P) were elevated in the adipose tissue of liver PRR KO mice, suggesting that adipose tissue could contribute to the circulating pool of sPRR. Overall, this work supports previous works and opens a new area of investigation concerning the function of sPRR in lipid metabolism and adipose tissue-liver cross talk.NEW & NOTEWORTHY Hepatic PRR and its soluble form, sPRR, contribute to triglyceride and cholesterol homeostasis and hepatic inflammation. Deletion of hepatic PRR decreased triglyceride levels through a PRR-PPARγ-dependent mechanism but increased hepatic cholesterol synthesis through sPRR-medicated upregulation of SREBP-2. Our study highlighted a new paradigm of cross talk between the liver and the adipose tissue involving cholesterol and sPRR.


Asunto(s)
Homeostasis/genética , Metabolismo de los Lípidos/genética , Receptores de Superficie Celular/fisiología , Tejido Adiposo/metabolismo , Animales , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Células Hep G2 , Humanos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Solubilidad , Triglicéridos/metabolismo , Receptor de Prorenina
4.
FASEB J ; 33(2): 2719-2731, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30303739

RESUMEN

Remodeling of the gut microbiota is implicated in various metabolic and inflammatory diseases of the gastrointestinal tract. We hypothesized that the gut microbiota affects the DNA methylation profile of intestinal epithelial cells (IECs) which could, in turn, alter intestinal function. In this study, we used mass spectrometry and methylated DNA capture to respectively investigate global and genome-wide DNA methylation of intestinal epithelial cells from germ-free (GF) and conventionally raised mice. In colonic IECs from GF mice, DNA was markedly hypermethylated. This was associated with a dramatic loss of ten-eleven-translocation activity, a lower DNA methyltransferase activity and lower circulating levels of the 1-carbon metabolite, folate. At the gene level, we found an enrichment for differentially methylated regions proximal to genes regulating the cytotoxicity of NK cells (false-discovery rate < 8.9E-6), notably genes regulating the cross-talk between NK cells and target cells, such as members of the NK group 2 member D ligand superfamily Raet. This distinct epigenetic signature was associated with a marked decrease in Raet1 expression and a loss of CD56+/CD45+ cells in the intestine of GF mice. Thus, our results indicate that altered activity of methylation-modifying enzymes in GF mice influences the IEC epigenome and modulates the crosstalk between IECs and NK cells. Epigenetic reprogramming of IECs may modulate intestinal function in diseases associated with altered gut microbiota.-Poupeau, A., Garde, C., Sulek, K., Citirikkaya, K., Treebak, J. T., Arumugam, M., Simar, D., Olofsson, L. E., Bäckhed, F., Barrès, R. Genes controlling the activation of natural killer lymphocytes are epigenetically remodeled in intestinal cells from germ-free mice.


Asunto(s)
Biomarcadores/análisis , Epigénesis Genética , Células Epiteliales/inmunología , Microbioma Gastrointestinal , Regulación de la Expresión Génica , Vida Libre de Gérmenes , Células Asesinas Naturales/inmunología , Animales , Metilación de ADN , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Femenino , Intestinos/citología , Intestinos/microbiología , Intestinos/fisiología , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/microbiología , Masculino , Ratones
5.
Metabolism ; 65(12): 1706-1719, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27832859

RESUMEN

BACKGROUND: The obesogenic potential of high-fat diets (HFD) in rodents is attenuated when the protein:carbohydrate ratio is increased. However, it is not known if intake of an HFD irrespective of the protein:carbohydrate ratio and in the absence of weight gain, affects glucose homeostasis and the gut microbiota. METHODS: We fed C57BL6/J mice 3 different HFDs with decreasing protein:carbohydrate ratios for 8weeks and compared the results to a LFD reference group. We analyzed the gut microbiota composition by 16S rDNA amplicon sequencing and the intestinal gene expression by real-time PCR. Whole body glucose homeostasis was evaluated by insulin and glucose tolerance tests as well as by a hyperinsulinemic euglycemic clamp experiment. RESULTS: Compared with LFD-fed reference mice, HFD-fed mice, irrespective of protein:carbohydrate ratio, exhibited impaired glucose tolerance, whereas no differences were observed during insulin tolerance tests. The hyperinsulinemic euglycemic clamp revealed tissue-specific effects on glucose homeostasis in all HFD-fed groups. HFD-fed mice exhibited decreased insulin-stimulated glucose uptake in white but not in brown adipose tissue, and sustained endogenous glucose production under insulin-stimulated conditions. We observed no impairment of insulin-stimulated glucose uptake in skeletal muscles of different fiber type composition. HFD-feeding altered the gut microbiota composition paralleled by increased expression of pro-inflammatory cytokines and genes involved in gluconeogenesis in intestinal epithelial cells of the jejunum. CONCLUSIONS: Intake of a HFD profoundly affected glucose homeostasis, gut inflammatory responses, and gut microbiota composition in the absence of fat mass accretion.


Asunto(s)
Grasas de la Dieta/farmacología , Inflamación/inducido químicamente , Resistencia a la Insulina , Intestinos/patología , Aumento de Peso , Tejido Adiposo Blanco/metabolismo , Animales , Glucemia/metabolismo , Glucemia/fisiología , Intolerancia a la Glucosa , Homeostasis/efectos de los fármacos , Intestinos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota/efectos de los fármacos , Músculo Esquelético/metabolismo
6.
Med Sci (Paris) ; 29(8-9): 765-71, 2013.
Artículo en Francés | MEDLINE | ID: mdl-24005632

RESUMEN

The transcription factor ChREBP, whose activity is induced by glucose metabolism, is a key player in the induction of genes of de novo fatty acid synthesis (lipogenesis) in response to glucose. Recent studies have shown that an active lipogenesis via ChREBP activation was associated with improved insulin sensitivity in adipose tissue and liver in mice. In particular, ChREBP, by limiting toxicity related to the accumulation of deleterious fatty acids, would be a major player of hepatic insulin sensitivity. The analysis of cohort of obese patients showed a positive correlation between ChREBP expression in the subcutaneous and visceral white adipose tissue and insulin sensitivity. More complex results were however obtained for ChREBP and hepatic insulin sensitivity. The identification of a novel ChREBP isoform, ChREBPß, may provide a better understanding of the relationship between ChREBP, lipogenesis and insulin sensitivity in human liver.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Resistencia a la Insulina/fisiología , Acetilación , Acilación , Tejido Adiposo/efectos de los fármacos , Animales , Ácidos Grasos/biosíntesis , Glucosa/metabolismo , Humanos , Hígado/efectos de los fármacos , Ratones , Obesidad/fisiopatología , Isoformas de Proteínas
7.
Biochim Biophys Acta ; 1812(8): 995-1006, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21453770

RESUMEN

There is a worldwide epidemic of obesity and type 2 diabetes, two major public health concerns associated with alterations in both insulin and glucose signaling pathways. Glucose is not only an energy source but also controls the expression of key genes involved in energetic metabolism, through the glucose-signaling transcription factor, Carbohydrate Responsive Element Binding Protein (ChREBP). ChREBP has emerged as a central regulator of de novo fatty acid synthesis (lipogenesis) in response to glucose under both physiological and physiopathological conditions. Glucose activates ChREBP by regulating its entry from the cytosol to the nucleus, thereby promoting its binding to carbohydrate responsive element (ChoRE) in the promoter regions of glycolytic (L-PK) and lipogenic genes (ACC and FAS). We have previously reported that the inhibition of ChREBP in liver of obese ob/ob mice improves the metabolic alterations linked to obesity, fatty liver and insulin-resistance. Therefore, regulating ChREBP activity could be an attractive target for lipid-lowering therapies in obesity and diabetes. However, before this is possible, a better understanding of the mechanism(s) regulating its activity is needed. In this review, we summarize recent findings on the role and regulation of ChREBP and particularly emphasize on the cross-regulations that may exist between key nuclear receptors (LXR, TR, HNF4α) and ChREBP for the control of hepatic glucose metabolism. These novel molecular cross-talks may open the way to new pharmacological opportunities. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Glucosa/metabolismo , Hígado/metabolismo , Receptor Cross-Talk , Receptores Citoplasmáticos y Nucleares/fisiología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...